Os números de Fibonacci são os números na seguinte seqüência inteira.
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …… ..

Em termos matemáticos, a sequência Fn dos números de Fibonacci é definida pela relação de recorrência. 

Fn = Fn-1 + Fn-2

com valores de semente 

F0 = 0 and F1 = 1.

Dado um número n, imprima o n-ésimo número de Fibonacci. 

Exemplos: 

Input  : n = 2
Output : 1

Input  : n = 9
Output : 34

Escreva uma função int fib (int n) que retorna F n . Por exemplo, se n = 0, então fib() deve retornar 0. Se n = 1, então ele deve retornar 1. Para n> 1, ele deve retornar F n-1 + F n-2

For n = 9
Output:34

A seguir estão diferentes métodos para obter o enésimo número de Fibonacci. 

Método 1 (Usar recursão) 
Um método simples que é uma relação de recorrência matemática de implementação recursiva direta fornecida acima.

//Fibonacci Series using Recursion
#include<bits/stdc++.h>
using namespace std;
 
int fib(int n)
{
    if (n <= 1)
        return n;
    return fib(n-1) + fib(n-2);
}
 
int main ()
{
    int n = 9;
    cout << fib(n);
    getchar();
    return 0;
}
 
// This code is contributed
// by Akanksha Rai
//Fibonacci Series using Recursion
#include<stdio.h>
int fib(int n)
{
   if (n <= 1)
      return n;
   return fib(n-1) + fib(n-2);
}
 
int main ()
{
  int n = 9;
  printf("%d", fib(n));
  getchar();
  return 0;
}
//Fibonacci Series using Recursion
class fibonacci
{
    static int fib(int n)
    {
    if (n <= 1)
       return n;
    return fib(n-1) + fib(n-2);
    }
      
    public static void main (String args[])
    {
    int n = 9;
    System.out.println(fib(n));
    }
}
/* This code is contributed by Rajat Mishra */
# Function for nth Fibonacci number
 
def Fibonacci(n):
    if n<0:
        print("Incorrect input")
    # First Fibonacci number is 0
    elif n==0:
        return 0
    # Second Fibonacci number is 1
    elif n==1:
        return 1
    else:
        return Fibonacci(n-1)+Fibonacci(n-2)
 
# Driver Program
 
print(Fibonacci(9))
 
#This code is contributed by Saket Modi
// C# program for Fibonacci Series
// using Recursion
using System;
 
public class GFG
{
    public static int Fib(int n)
    {
        if (n <= 1)
        {
            return n;
        }
        else
        {
            return Fib(n - 1) + Fib(n - 2);
        }
    }
         
    // driver code
    public static void Main(string[] args)
    {
        int n = 9;
        Console.Write(Fib(n));
    }
}
 
// This code is contributed by Sam007
<?php
// Fibonacci Series
// using Recursion
 
// function returns
// the Fibonacci number
function fib($n)
{
    if ($n <= 1)
        return $n;
    return fib($n - 1) +
           fib($n - 2);
}
 
// Driver Code
$n = 9;
echo fib($n);
 
// This code is contributed by aj_36
?>
<script>
//Fibonacci Series using Recursion
    let n = 9;
     
    // function returns the Fibonacci number
    function fib(n) {
    if (n <= 1)
        return n;
    return fib(n-1) + fib(n-2);
}
  
    //function call
    document.write(fib(n));
//This code is contributed by Surbhi Tyagi
</script>
Saída
34

Complexidade de tempo: T (n) = T (n-1) + T (n-2) que é exponencial. 

Podemos observar que esta implementação faz muito trabalho repetido (veja a seguinte árvore de recursão). Portanto, esta é uma implementação ruim para o enésimo número de Fibonacci. 

                          fib(5)   
                     /                \
               fib(4)                fib(3)   
             /        \              /       \ 
         fib(3)      fib(2)         fib(2)   fib(1)
        /    \       /    \        /      \
  fib(2)   fib(1)  fib(1) fib(0) fib(1) fib(0)
  /     \
fib(1) fib(0)

Espaço extra: O (n) se considerarmos o tamanho da pilha de chamadas de função, caso contrário, O (1).

Método 2 (usar programação dinâmica) 
Podemos evitar o trabalho repetido feito no método 1, armazenando os números de Fibonacci calculados até agora. 

// C++ program for Fibonacci Series 
// using Dynamic Programming
#include<bits/stdc++.h>
using namespace std;
 
class GFG{
     
public:
int fib(int n)
{
     
    // Declare an array to store
    // Fibonacci numbers.
    // 1 extra to handle
    // case, n = 0
    int f[n + 2];
    int i;
 
    // 0th and 1st number of the
    // series are 0 and 1
    f[0] = 0;
    f[1] = 1;
 
    for(i = 2; i <= n; i++)
    {
         
       //Add the previous 2 numbers
       // in the series and store it
       f[i] = f[i - 1] + f[i - 2];
    }
    return f[n];
    }
};
 
// Driver code
int main ()
{
    GFG g;
    int n = 9;
     
    cout << g.fib(n);
    return 0;
}
 
// This code is contributed by SoumikMondal
//Fibonacci Series using Dynamic Programming
#include<stdio.h>
 
int fib(int n)
{
  /* Declare an array to store Fibonacci numbers. */
  int f[n+2];   // 1 extra to handle case, n = 0
  int i;
 
  /* 0th and 1st number of the series are 0 and 1*/
  f[0] = 0;
  f[1] = 1;
 
  for (i = 2; i <= n; i++)
  {
      /* Add the previous 2 numbers in the series
         and store it */
      f[i] = f[i-1] + f[i-2];
  }
 
  return f[n];
}
 
int main ()
{
  int n = 9;
  printf("%d", fib(n));
  getchar();
  return 0;
}
// Fibonacci Series using Dynamic Programming
class fibonacci
{
   static int fib(int n)
    {
    /* Declare an array to store Fibonacci numbers. */
    int f[] = new int[n+2]; // 1 extra to handle case, n = 0
    int i;
      
    /* 0th and 1st number of the series are 0 and 1*/
    f[0] = 0;
    f[1] = 1;
     
    for (i = 2; i <= n; i++)
    {
       /* Add the previous 2 numbers in the series
         and store it */
        f[i] = f[i-1] + f[i-2];
    }
      
    return f[n];
    }
      
    public static void main (String args[])
    {
        int n = 9;
        System.out.println(fib(n));
    }
}
/* This code is contributed by Rajat Mishra */
# Fibonacci Series using Dynamic Programming
def fibonacci(n):
     
    # Taking 1st two fibonacci numbers as 0 and 1
    f = [0, 1]
     
     
    for i in range(2, n+1):
        f.append(f[i-1] + f[i-2])
    return f[n]
     
print(fibonacci(9))
// C# program for Fibonacci Series
// using Dynamic Programming
using System;
class fibonacci {
     
static int fib(int n)
    {
         
        // Declare an array to
        // store Fibonacci numbers.
        // 1 extra to handle
        // case, n = 0
        int []f = new int[n + 2];
        int i;
         
        /* 0th and 1st number of the
           series are 0 and 1 */
        f[0] = 0;
        f[1] = 1;
         
        for (i = 2; i <= n; i++)
        {
            /* Add the previous 2 numbers
               in the series and store it */
            f[i] = f[i - 1] + f[i - 2];
        }
         
        return f[n];
    }
     
    // Driver Code
    public static void Main ()
    {
        int n = 9;
        Console.WriteLine(fib(n));
    }
}
 
// This code is contributed by anuj_67.
<?php
//Fibonacci Series using Dynamic
// Programming
 
function fib( $n)
{
     
    /* Declare an array to store
    Fibonacci numbers. */
     
    // 1 extra to handle case,
    // n = 0
    $f = array();
    $i;
     
    /* 0th and 1st number of the
    series are 0 and 1*/
    $f[0] = 0;
    $f[1] = 1;
     
    for ($i = 2; $i <= $n; $i++)
    {
         
        /* Add the previous 2
        numbers in the series
        and store it */
        $f[$i] = $f[$i-1] + $f[$i-2];
    }
     
    return $f[$n];
}
 
$n = 9;
echo fib($n);
 
// This code is contributed by
// anuj_67.
?>
<script>
 
// Fibonacci Series using Dynamic Programming
 
    function  fib(n)
    {
        /* Declare an array to store Fibonacci numbers. */
        let f = new Array(n+2); // 1 extra to handle case, n = 0
        let i;
        /* 0th and 1st number of the series are 0 and 1*/
        f[0] = 0;
        f[1] = 1;
        for (i = 2; i <= n; i++)
        {
            /* Add the previous 2 numbers in the series
            and store it */
            f[i] = f[i-1] + f[i-2];
        }
        return f[n];
    }
    let n=9;
    document.write(fib(n));
     
    // This code is contributed by avanitrachhadiya2155
     
</script>
Saída
34

Método 3 (Método 2 com 
otimização de espaço ) Podemos otimizar o espaço usado no método 2 armazenando os dois números anteriores apenas porque isso é tudo de que precisamos para obter o próximo número de Fibonacci em série. 

// Fibonacci Series using Space Optimized Method
#include<bits/stdc++.h>
using namespace std;
 
int fib(int n)
{
    int a = 0, b = 1, c, i;
    if( n == 0)
        return a;
    for(i = 2; i <= n; i++)
    {
       c = a + b;
       a = b;
       b = c;
    }
    return b;
}
 
// Driver code
int main()
{
    int n = 9;
     
    cout << fib(n);
    return 0;
}
 
// This code is contributed by Code_Mech
// Fibonacci Series using Space Optimized Method
#include<stdio.h>
int fib(int n)
{
  int a = 0, b = 1, c, i;
  if( n == 0)
    return a;
  for (i = 2; i <= n; i++)
  {
     c = a + b;
     a = b;
     b = c;
  }
  return b;
}
 
int main ()
{
  int n = 9;
  printf("%d", fib(n));
  getchar();
  return 0;
}
// Java program for Fibonacci Series using Space
// Optimized Method
class fibonacci
{
    static int fib(int n)
    {
        int a = 0, b = 1, c;
        if (n == 0)
            return a;
        for (int i = 2; i <= n; i++)
        {
            c = a + b;
            a = b;
            b = c;
        }
        return b;
    }
 
    public static void main (String args[])
    {
        int n = 9;
        System.out.println(fib(n));
    }
}
 
// This code is contributed by Mihir Joshi
# Function for nth fibonacci number - Space Optimisation
# Taking 1st two fibonacci numbers as 0 and 1
 
def fibonacci(n):
    a = 0
    b = 1
    if n < 0:
        print("Incorrect input")
    elif n == 0:
        return a
    elif n == 1:
        return b
    else:
        for i in range(2,n+1):
            c = a + b
            a = b
            b = c
        return b
 
# Driver Program
 
print(fibonacci(9))
 
#This code is contributed by Saket Modi
// C# program for Fibonacci Series
// using Space Optimized Method
using System;
 
namespace Fib
{
    public class GFG
    {
        static int Fib(int n)
        {
            int a = 0, b = 1, c = 0;
             
            // To return the first Fibonacci number
            if (n == 0) return a;
     
            for (int i = 2; i <= n; i++)
            {
                c = a + b;
                a = b;
                b = c;
            }
     
            return b;
        }
         
    // Driver function
    public static void Main(string[] args)
        {
             
            int n = 9;
            Console.Write("{0} ", Fib(n));
        }
    }
}
 
// This code is contributed by Sam007.
<?php
// PHP program for Fibonacci Series
// using Space Optimized Method
 
function fib( $n)
{
    $a = 0;
    $b = 1;
    $c;
    $i;
    if( $n == 0)
        return $a;
    for($i = 2; $i <= $n; $i++)
    {
        $c = $a + $b;
        $a = $b;
        $b = $c;
    }
    return $b;
}
 
// Driver Code
$n = 9;
echo fib($n);
 
// This code is contributed by anuj_67.
?>
<script>
 
// Javascript program for Fibonacci Series using Space Optimized Method
 
function fib(n)
{
    let a = 0, b = 1, c, i;
    if( n == 0)
        return a;
    for(i = 2; i <= n; i++)
    {
    c = a + b;
    a = b;
    b = c;
    }
    return b;
}
 
// Driver code
 
    let n = 9;
     
    document.write(fib(n));
 
// This code is contributed by Mayank Tyagi
 
</script>
Saída
34

Complexidade de tempo: O (n) 
Espaço extra: O (1)

Método 4 (usando a potência da array {{1, 1}, {1, 0}}) 
Este outro O (n) que se baseia no fato de que se n vezes multiplicarmos a array M = {{1,1}, {1,0}} para si mesmo (em outras palavras, calcule a potência (M, n)), então obtemos o (n + 1) o número de Fibonacci como o elemento na linha e coluna (0, 0) na array resultante.
A representação da array fornece a seguinte expressão fechada para os números de Fibonacci: 
 

fibonaciarray

#include<bits/stdc++.h>
using namespace std;
 
// Helper function that multiplies 2
// matrices F and M of size 2*2, and
// puts the multiplication result
// back to F[][]
void multiply(int F[2][2], int M[2][2]);
 
// Helper function that calculates F[][]
// raise to the power n and puts the
// result in F[][]
// Note that this function is designed
// only for fib() and won't work as
// general power function
void power(int F[2][2], int n);
 
int fib(int n)
{
    int F[2][2] = { { 1, 1 }, { 1, 0 } };
     
    if (n == 0)
        return 0;
         
    power(F, n - 1);
     
    return F[0][0];
}
 
void multiply(int F[2][2], int M[2][2])
{
    int x = F[0][0] * M[0][0] +
            F[0][1] * M[1][0];
    int y = F[0][0] * M[0][1] +
            F[0][1] * M[1][1];
    int z = F[1][0] * M[0][0] +
            F[1][1] * M[1][0];
    int w = F[1][0] * M[0][1] +
            F[1][1] * M[1][1];
     
    F[0][0] = x;
    F[0][1] = y;
    F[1][0] = z;
    F[1][1] = w;
}
 
void power(int F[2][2], int n)
{
    int i;
    int M[2][2] = { { 1, 1 }, { 1, 0 } };
     
    // n - 1 times multiply the
    // matrix to {{1,0},{0,1}}
    for(i = 2; i <= n; i++)
        multiply(F, M);
}
 
// Driver code
int main()
{
    int n = 9;
     
    cout << " " <<  fib(n);
     
    return 0;
}
 
// This code is contributed by shivanisinghss2110
#include <stdio.h>
 
/* Helper function that multiplies 2 matrices F and M of size 2*2, and
  puts the multiplication result back to F[][] */
void multiply(int F[2][2], int M[2][2]);
 
/* Helper function that calculates F[][] raise to the power n and puts the
  result in F[][]
  Note that this function is designed only for fib() and won't work as general
  power function */
void power(int F[2][2], int n);
 
int fib(int n)
{
  int F[2][2] = {{1,1},{1,0}};
  if (n == 0)
      return 0;
  power(F, n-1);
 
  return F[0][0];
}
 
void multiply(int F[2][2], int M[2][2])
{
  int x =  F[0][0]*M[0][0] + F[0][1]*M[1][0];
  int y =  F[0][0]*M[0][1] + F[0][1]*M[1][1];
  int z =  F[1][0]*M[0][0] + F[1][1]*M[1][0];
  int w =  F[1][0]*M[0][1] + F[1][1]*M[1][1];
 
  F[0][0] = x;
  F[0][1] = y;
  F[1][0] = z;
  F[1][1] = w;
}
 
void power(int F[2][2], int n)
{
  int i;
  int M[2][2] = {{1,1},{1,0}};
 
  // n - 1 times multiply the matrix to {{1,0},{0,1}}
  for (i = 2; i <= n; i++)
      multiply(F, M);
}
 
/* Driver program to test above function */
int main()
{
  int n = 9;
  printf("%d", fib(n));
  getchar();
  return 0;
}
class fibonacci
{
     
    static int fib(int n)
    {
    int F[][] = new int[][]{{1,1},{1,0}};
    if (n == 0)
        return 0;
    power(F, n-1);
     
       return F[0][0];
    }
      
     /* Helper function that multiplies 2 matrices F and M of size 2*2, and
     puts the multiplication result back to F[][] */
    static void multiply(int F[][], int M[][])
    {
    int x =  F[0][0]*M[0][0] + F[0][1]*M[1][0];
    int y =  F[0][0]*M[0][1] + F[0][1]*M[1][1];
    int z =  F[1][0]*M[0][0] + F[1][1]*M[1][0];
    int w =  F[1][0]*M[0][1] + F[1][1]*M[1][1];
      
    F[0][0] = x;
    F[0][1] = y;
    F[1][0] = z;
    F[1][1] = w;
    }
 
    /* Helper function that calculates F[][] raise to the power n and puts the
    result in F[][]
    Note that this function is designed only for fib() and won't work as general
    power function */
    static void power(int F[][], int n)
    {
    int i;
    int M[][] = new int[][]{{1,1},{1,0}};
     
    // n - 1 times multiply the matrix to {{1,0},{0,1}}
    for (i = 2; i <= n; i++)
        multiply(F, M);
    }
      
    /* Driver program to test above function */
    public static void main (String args[])
    {
    int n = 9;
    System.out.println(fib(n));
    }
}
/* This code is contributed by Rajat Mishra */
# Helper function that multiplies
# 2 matrices F and M of size 2*2,
# and puts the multiplication
# result back to F[][]
 
# Helper function that calculates
# F[][] raise to the power n and
# puts the result in F[][]
# Note that this function is
# designed only for fib() and
# won't work as general
# power function
def fib(n):
    F = [[1, 1],
         [1, 0]]
    if (n == 0):
        return 0
    power(F, n - 1)
     
    return F[0][0]
 
def multiply(F, M):
 
    x = (F[0][0] * M[0][0] +
         F[0][1] * M[1][0])
    y = (F[0][0] * M[0][1] +
         F[0][1] * M[1][1])
    z = (F[1][0] * M[0][0] +
         F[1][1] * M[1][0])
    w = (F[1][0] * M[0][1] +
         F[1][1] * M[1][1])
     
    F[0][0] = x
    F[0][1] = y
    F[1][0] = z
    F[1][1] = w
 
def power(F, n):
 
    M = [[1, 1],
         [1, 0]]
 
    # n - 1 times multiply the
    # matrix to {{1,0},{0,1}}
    for i in range(2, n + 1):
        multiply(F, M)
 
# Driver Code
if __name__ == "__main__":
    n = 9
    print(fib(n))
 
# This code is contributed
# by ChitraNayal
using System;
 
class GFG {
     
    static int fib(int n)
    {
        int [,]F = new int[,] {{1, 1},
                               {1, 0} };
        if (n == 0)
            return 0;
        power(F, n-1);
         
        return F[0,0];
    }
     
    /* Helper function that multiplies 2
    matrices F and M of size 2*2, and puts
    the multiplication result back to F[][] */
    static void multiply(int [,]F, int [,]M)
    {
        int x = F[0,0]*M[0,0] + F[0,1]*M[1,0];
        int y = F[0,0]*M[0,1] + F[0,1]*M[1,1];
        int z = F[1,0]*M[0,0] + F[1,1]*M[1,0];
        int w = F[1,0]*M[0,1] + F[1,1]*M[1,1];
         
        F[0,0] = x;
        F[0,1] = y;
        F[1,0] = z;
        F[1,1] = w;
    }
 
    /* Helper function that calculates F[][]
    raise to the power n and puts the result
    in F[][] Note that this function is designed
    only for fib() and won't work as general
    power function */
    static void power(int [,]F, int n)
    {
        int i;
        int [,]M = new int[,]{{1, 1},
                              {1, 0} };
         
        // n - 1 times multiply the matrix to
        // {{1,0},{0,1}}
        for (i = 2; i <= n; i++)
            multiply(F, M);
    }
     
    /* Driver program to test above function */
    public static void Main ()
    {
        int n = 9;
        Console.WriteLine(fib(n));
    }
}
 
// This code is contributed by anuj_67.
<?php
 
function fib($n)
{
    $F = array(array(1, 1),
               array(1, 0));
    if ($n == 0)
        return 0;
    power($F, $n - 1);
     
    return $F[0][0];
}
 
function multiply(&$F, &$M)
{
$x = $F[0][0] * $M[0][0] +
     $F[0][1] * $M[1][0];
$y = $F[0][0] * $M[0][1] +
     $F[0][1] * $M[1][1];
$z = $F[1][0] * $M[0][0] +
     $F[1][1] * $M[1][0];
$w = $F[1][0] * $M[0][1] +
     $F[1][1] * $M[1][1];
 
$F[0][0] = $x;
$F[0][1] = $y;
$F[1][0] = $z;
$F[1][1] = $w;
}
 
function power(&$F, $n)
{
    $M = array(array(1, 1),
               array(1, 0));
     
    // n - 1 times multiply the
    // matrix to {{1,0},{0,1}}
    for ($i = 2; $i <= $n; $i++)
        multiply($F, $M);
}
 
// Driver Code
$n = 9;
echo fib($n);
 
// This code is contributed
// by ChitraNayal
?>
<script>
 
// Note that this function is designed
// only for fib() and won't work as
// general power function
 
  
function fib( n)
{
     var F = [ [ 1, 1 ], [ 1, 0 ] ];
      
    if (n == 0)
        return 0;
          
    power(F, n - 1);
      
    return F[0][0];
}
// Helper function that multiplies 2
// matrices F and M of size 2*2, and
// puts the multiplication result
// back to F[][]
  function multiply( F, M )
{
    x = F[0][0] * M[0][0] +
            F[0][1] * M[1][0];
    y = F[0][0] * M[0][1] +
            F[0][1] * M[1][1];
     z = F[1][0] * M[0][0] +
            F[1][1] * M[1][0];
    w = F[1][0] * M[0][1] +
            F[1][1] * M[1][1];
      
    F[0][0] = x;
    F[0][1] = y;
    F[1][0] = z;
    F[1][1] = w;
}
// Helper function that calculates F[][]
// raise to the power n and puts the
// result in F[][]
  
function power( F, n)
{
    var i;
     var M = [[ 1, 1 ], [ 1, 0 ]];
      
    // n - 1 times multiply the
    // matrix to {{1,0},{0,1}}
    for(i = 2; i <= n; i++)
        multiply(F, M);
}
  
// Driver code
 
    var   n = 9;
      
     document.write (" " +  fib(n));
 //This code is contributed by sweetyty
 </script>
Saída
34

Complexidade de tempo: O (n) 
Espaço extra: O (1) 
 

Método 5 (Método 4 otimizado) 
O método 4 pode ser otimizado para trabalhar em complexidade de tempo O (Logn). Podemos fazer multiplicação recursiva para obter potência (M, n) no método anterior (semelhante à otimização feita neste post)

// Fibonacci Series using Optimized Method
#include <bits/stdc++.h>
using namespace std;
 
void multiply(int F[2][2], int M[2][2]);
void power(int F[2][2], int n);
 
// Function that returns nth Fibonacci number
int fib(int n)
{
    int F[2][2] = {{1, 1}, {1, 0}};
    if (n == 0)
        return 0;
    power(F, n - 1);
 
    return F[0][0];
}
 
// Optimized version of power() in method 4
void power(int F[2][2], int n)
{
    if(n == 0 || n == 1)
       return;
    int M[2][2] = {{1, 1}, {1, 0}};
     
    power(F, n / 2);
    multiply(F, F);
     
    if (n % 2 != 0)
        multiply(F, M);
}
 
void multiply(int F[2][2], int M[2][2])
{
    int x = F[0][0] * M[0][0] + F[0][1] * M[1][0];
    int y = F[0][0] * M[0][1] + F[0][1] * M[1][1];
    int z = F[1][0] * M[0][0] + F[1][1] * M[1][0];
    int w = F[1][0] * M[0][1] + F[1][1] * M[1][1];
     
    F[0][0] = x;
    F[0][1] = y;
    F[1][0] = z;
    F[1][1] = w;
}
 
// Driver code
int main()
{
    int n = 9;
     
    cout << fib(9);
    getchar();
     
    return 0;
}
 
// This code is contributed by Nidhi_biet
#include <stdio.h>
 
void multiply(int F[2][2], int M[2][2]);
 
void power(int F[2][2], int n);
 
/* function that returns nth Fibonacci number */
int fib(int n)
{
  int F[2][2] = {{1,1},{1,0}};
  if (n == 0)
    return 0;
  power(F, n-1);
  return F[0][0];
}
 
/* Optimized version of power() in method 4 */
void power(int F[2][2], int n)
{
  if( n == 0 || n == 1)
      return;
  int M[2][2] = {{1,1},{1,0}};
 
  power(F, n/2);
  multiply(F, F);
 
  if (n%2 != 0)
     multiply(F, M);
}
 
void multiply(int F[2][2], int M[2][2])
{
  int x =  F[0][0]*M[0][0] + F[0][1]*M[1][0];
  int y =  F[0][0]*M[0][1] + F[0][1]*M[1][1];
  int z =  F[1][0]*M[0][0] + F[1][1]*M[1][0];
  int w =  F[1][0]*M[0][1] + F[1][1]*M[1][1];
 
  F[0][0] = x;
  F[0][1] = y;
  F[1][0] = z;
  F[1][1] = w;
}
 
/* Driver program to test above function */
int main()
{
  int n = 9;
  printf("%d", fib(9));
  getchar();
  return 0;
}
//Fibonacci Series using Optimized Method
class fibonacci
{
    /* function that returns nth Fibonacci number */
    static int fib(int n)
    {
    int F[][] = new int[][]{{1,1},{1,0}};
    if (n == 0)
        return 0;
    power(F, n-1);
      
    return F[0][0];
    }
      
    static void multiply(int F[][], int M[][])
    {
    int x =  F[0][0]*M[0][0] + F[0][1]*M[1][0];
    int y =  F[0][0]*M[0][1] + F[0][1]*M[1][1];
    int z =  F[1][0]*M[0][0] + F[1][1]*M[1][0];
    int w =  F[1][0]*M[0][1] + F[1][1]*M[1][1];
     
    F[0][0] = x;
    F[0][1] = y;
    F[1][0] = z;
    F[1][1] = w;
    }
      
    /* Optimized version of power() in method 4 */
    static void power(int F[][], int n)
    {
    if( n == 0 || n == 1)
      return;
    int M[][] = new int[][]{{1,1},{1,0}};
      
    power(F, n/2);
    multiply(F, F);
      
    if (n%2 != 0)
       multiply(F, M);
    }
     
    /* Driver program to test above function */
    public static void main (String args[])
    {
         int n = 9;
     System.out.println(fib(n));
    }
}
/* This code is contributed by Rajat Mishra */
# Fibonacci Series using
# Optimized Method
 
# function that returns nth
# Fibonacci number
def fib(n):
     
    F = [[1, 1],
         [1, 0]]
    if (n == 0):
        return 0
    power(F, n - 1)
         
    return F[0][0]
     
def multiply(F, M):
     
    x = (F[0][0] * M[0][0] +
         F[0][1] * M[1][0])
    y = (F[0][0] * M[0][1] +
         F[0][1] * M[1][1])
    z = (F[1][0] * M[0][0] +
         F[1][1] * M[1][0])
    w = (F[1][0] * M[0][1] +
         F[1][1] * M[1][1])
     
    F[0][0] = x
    F[0][1] = y
    F[1][0] = z
    F[1][1] = w
         
# Optimized version of
# power() in method 4
def power(F, n):
 
    if( n == 0 or n == 1):
        return;
    M = [[1, 1],
         [1, 0]];
         
    power(F, n // 2)
    multiply(F, F)
         
    if (n % 2 != 0):
        multiply(F, M)
     
# Driver Code
if __name__ == "__main__":
    n = 9
    print(fib(n))
 
# This code is contributed
# by ChitraNayal
// Fibonacci Series using
// Optimized Method
using System;
 
class GFG
{
/* function that returns
nth Fibonacci number */
static int fib(int n)
{
int[,] F = new int[,]{{1, 1},
                      {1, 0}};
if (n == 0)
    return 0;
power(F, n - 1);
 
return F[0, 0];
}
 
static void multiply(int[,] F,
                     int[,] M)
{
int x = F[0, 0] * M[0, 0] +
        F[0, 1] * M[1, 0];
int y = F[0, 0] * M[0, 1] +
        F[0, 1] * M[1, 1];
int z = F[1, 0] * M[0, 0] +
        F[1, 1] * M[1, 0];
int w = F[1, 0] * M[0, 1] +
        F[1, 1] * M[1, 1];
 
F[0, 0] = x;
F[0, 1] = y;
F[1, 0] = z;
F[1, 1] = w;
}
 
/* Optimized version of
power() in method 4 */
static void power(int[,] F, int n)
{
if( n == 0 || n == 1)
return;
int[,] M = new int[,]{{1, 1},
                      {1, 0}};
 
power(F, n / 2);
multiply(F, F);
 
if (n % 2 != 0)
multiply(F, M);
}
 
// Driver Code
public static void Main ()
{
    int n = 9;
    Console.Write(fib(n));
}
}
 
// This code is contributed
// by ChitraNayal
<script>
 
// Fibonacci Series using Optimized Method
 
// Function that returns nth Fibonacci number
function fib(n)
{
    var F = [ [ 1, 1 ], [ 1, 0 ] ];
    if (n == 0)
        return 0;
         
    power(F, n - 1);
 
    return F[0][0];
}
 
function multiply(F, M)
{
    var x = F[0][0] * M[0][0] + F[0][1] * M[1][0];
    var y = F[0][0] * M[0][1] + F[0][1] * M[1][1];
    var z = F[1][0] * M[0][0] + F[1][1] * M[1][0];
    var w = F[1][0] * M[0][1] + F[1][1] * M[1][1];
 
    F[0][0] = x;
    F[0][1] = y;
    F[1][0] = z;
    F[1][1] = w;
}
 
// Optimized version of power() in method 4 */
function power(F, n)
{
    if (n == 0 || n == 1)
        return;
         
    var M = [ [ 1, 1 ], [ 1, 0 ] ];
 
    power(F, n / 2);
    multiply(F, F);
 
    if (n % 2 != 0)
        multiply(F, M);
}
 
// Driver code
var n = 9;
 
document.write(fib(n));
 
// This code is contributed by gauravrajput1
 
</script>
Saída
34

Complexidade de tempo: O (Logn)  
Espaço extra: O (Logn) se considerarmos o tamanho da pilha de chamadas de função, caso contrário, O (1).

Método 6 (Tempo O (Log n))
Abaixo está mais uma fórmula de recorrência interessante que pode ser usada para encontrar o enésimo número de Fibonacci no tempo O (Log n).  

If n is even then k = n/2:
F(n) = [2*F(k-1) + F(k)]*F(k)

If n is odd then k = (n + 1)/2
F(n) = F(k)*F(k) + F(k-1)*F(k-1)

Como essa fórmula funciona?  
A fórmula pode ser derivada da equação da array acima. 
 

fibonaciarray

Taking determinant on both sides, we get 

(-1)n = Fn+1Fn-1 - Fn2 
 
Moreover, since AnAm = An+m for any square matrix A, 
the following identities can be derived (they are obtained 
form two different coefficients of the matrix product)

FmFn + Fm-1Fn-1 = Fm+n-1         ---------------------------(1)

By putting n = n+1 in equation(1),
FmFn+1 + Fm-1Fn = Fm+n             --------------------------(2)

Putting m = n in equation(1).
F2n-1 = Fn2 + Fn-12
Putting m = n in equation(2)

F2n = (Fn-1 + Fn+1)Fn = (2Fn-1 + Fn)Fn (Source: Wiki)   --------
( By putting Fn+1 = Fn + Fn-1 )
To get the formula to be proved, we simply need to do the following 
If n is even, we can put k = n/2 
If n is odd, we can put k = (n+1)/2

Abaixo está a implementação da ideia acima.  

// C++ Program to find n'th fibonacci Number in
// with O(Log n) arithmetic operations
#include <bits/stdc++.h>
using namespace std;
 
const int MAX = 1000;
 
// Create an array for memoization
int f[MAX] = {0};
 
// Returns n'th fibonacci number using table f[]
int fib(int n)
{
    // Base cases
    if (n == 0)
        return 0;
    if (n == 1 || n == 2)
        return (f[n] = 1);
 
    // If fib(n) is already computed
    if (f[n])
        return f[n];
 
    int k = (n & 1)? (n+1)/2 : n/2;
 
    // Applying above formula [Note value n&1 is 1
    // if n is odd, else 0.
    f[n] = (n & 1)? (fib(k)*fib(k) + fib(k-1)*fib(k-1))
           : (2*fib(k-1) + fib(k))*fib(k);
 
    return f[n];
}
 
/* Driver program to test above function */
int main()
{
    int n = 9;
    printf("%d ", fib(n));
    return 0;
}
// Java Program to find n'th fibonacci
// Number with O(Log n) arithmetic operations
import java.util.*;
 
class GFG {
     
    static int MAX = 1000;
    static int f[];
     
    // Returns n'th fibonacci number using
    // table f[]
    public static int fib(int n)
    {
        // Base cases
        if (n == 0)
            return 0;
             
        if (n == 1 || n == 2)
            return (f[n] = 1);
      
        // If fib(n) is already computed
        if (f[n] != 0)
            return f[n];
      
        int k = (n & 1) == 1? (n + 1) / 2
                            : n / 2;
      
        // Applying above formula [Note value
        // n&1 is 1 if n is odd, else 0.
        f[n] = (n & 1) == 1? (fib(k) * fib(k) +
                        fib(k - 1) * fib(k - 1))
                       : (2 * fib(k - 1) + fib(k))
                       * fib(k);
      
        return f[n];
    }
     
    /* Driver program to test above function */
    public static void main(String[] args)
    {
        int n = 9;
        f= new int[MAX];
        System.out.println(fib(n));
    }
}
     
// This code is contributed by Arnav Kr. Mandal.
# Python3 Program to find n'th fibonacci Number in
# with O(Log n) arithmetic operations
MAX = 1000
 
# Create an array for memoization
f = [0] * MAX
 
# Returns n'th fibonacci number using table f[]
def fib(n) :
    # Base cases
    if (n == 0) :
        return 0
    if (n == 1 or n == 2) :
        f[n] = 1
        return (f[n])
 
    # If fib(n) is already computed
    if (f[n]) :
        return f[n]
 
    if( n & 1) :
        k = (n + 1) // 2
    else :
        k = n // 2
 
    # Applying above formula [Note value n&1 is 1
    # if n is odd, else 0.
    if((n & 1) ) :
        f[n] = (fib(k) * fib(k) + fib(k-1) * fib(k-1))
    else :
        f[n] = (2*fib(k-1) + fib(k))*fib(k)
 
    return f[n]
 
 
# Driver code
n = 9
print(fib(n))
 
 
# This code is contributed by Nikita Tiwari.
// C# Program to find n'th
// fibonacci Number with
// O(Log n) arithmetic operations
using System;
 
class GFG
{
 
static int MAX = 1000;
static int[] f;
 
// Returns n'th fibonacci
// number using table f[]
public static int fib(int n)
{
    // Base cases
    if (n == 0)
        return 0;
         
    if (n == 1 || n == 2)
        return (f[n] = 1);
 
    // If fib(n) is already
    // computed
    if (f[n] != 0)
        return f[n];
 
    int k = (n & 1) == 1 ? (n + 1) / 2
                         : n / 2;
 
    // Applying above formula
    // [Note value n&1 is 1 if
    // n is odd, else 0.
    f[n] = (n & 1) == 1 ? (fib(k) * fib(k) +
                           fib(k - 1) * fib(k - 1))
                        : (2 * fib(k - 1) + fib(k)) *
                                            fib(k);
 
    return f[n];
}
 
// Driver Code
static void Main()
{
    int n = 9;
    f = new int[MAX];
    Console.WriteLine(fib(n));
}
}
 
// This code is contributed by mits
<?php
// PHP Program to find n'th
// fibonacci Number in with
// O(Log n) arithmetic operations
 
$MAX = 1000;
 
// Returns n'th fibonacci
// number using table f[]
function fib($n)
{
    global $MAX;
     
    // Create an array for memoization
    $f = array_fill(0, $MAX, NULL);
     
    // Base cases
    if ($n == 0)
        return 0;
    if ($n == 1 || $n == 2)
        return ($f[$n] = 1);
 
    // If fib(n) is already computed
    if ($f[$n])
        return $f[$n];
 
    $k = ($n & 1) ? ($n + 1) / 2 : $n / 2;
 
    // Applying above formula
    // [Note value n&1 is 1 if
    // n is odd, else 0.
    $f[$n] = ($n & 1) ? (fib($k) * fib($k) +
                         fib($k - 1) * fib($k - 1)) :
                    (2 * fib($k - 1) + fib($k)) * fib($k);
 
    return $f[$n];
}
 
// Driver Code
$n = 9;
echo fib($n);
 
// This code is contributed
// by ChitraNayal
?>
<script>
      // JavaScript Program to find n'th fibonacci Number in
      // with O(Log n) arithmetic operations
 
      const MAX = 1000;
 
      // Create an array for memoization
      var f = [...Array(MAX)];
      f.fill(0);
 
      // Returns n'th fibonacci number using table f[]
      function fib(n) {
        // Base cases
        if (n == 0) return 0;
        if (n == 1 || n == 2) return (f[n] = 1);
 
        // If fib(n) is already computed
        if (f[n]) return f[n];
 
        var k = n & 1 ? (n + 1) / 2 : n / 2;
 
        // Applying above formula [Note value n&1 is 1
        // if n is odd, else 0.
        f[n] =
          n & 1
            ? fib(k) * fib(k) + fib(k - 1) * fib(k - 1)
            : (2 * fib(k - 1) + fib(k)) * fib(k);
 
        return f[n];
      }
 
      /* Driver program to test above function */
 
      var n = 9;
      document.write(fib(n));
       
      // This code is contributed by rdtank.
    </script>
Saída
34

A complexidade de tempo dessa solução é O (Log n), pois dividimos o problema pela metade em cada chamada recursiva.

Método 7 

Outra abordagem (usando a fórmula):
neste método, implementamos diretamente a fórmula para o enésimo termo na série de Fibonacci. 
F n = {[(√5 + 1) / 2] ^ n} / √5 

Referência: http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibFormula.html 

// C++ Program to find n'th fibonacci Number
#include<iostream>
#include<cmath>
 
int fib(int n) {
  double phi = (1 + sqrt(5)) / 2;
  return round(pow(phi, n) / sqrt(5));
}
 
// Driver Code
int main ()
{
  int n = 9;
  std::cout << fib(n) << std::endl;
  return 0;
}
//This code is contributed by Lokesh Mohanty.
// C Program to find n'th fibonacci Number
#include<stdio.h>
#include<math.h>
int fib(int n) {
  double phi = (1 + sqrt(5)) / 2;
  return round(pow(phi, n) / sqrt(5));
}
int main ()
{
  int n = 9;
  printf("%d", fib(n));
  return 0;
}
// Java Program to find n'th fibonacci Number
import java.util.*;
 
class GFG {
 
static int fib(int n) {
double phi = (1 + Math.sqrt(5)) / 2;
return (int) Math.round(Math.pow(phi, n)
                        / Math.sqrt(5));
}
 
// Driver Code
public static void main(String[] args) {
        int n = 9;
    System.out.println(fib(n));
    }
}
// This code is contributed by PrinciRaj1992
# Python3 program to find n'th
# fibonacci Number
import math
 
def fibo(n):
    phi = (1 + math.sqrt(5)) / 2
 
    return round(pow(phi, n) / math.sqrt(5))
     
# Driver code   
if __name__ == '__main__':
     
    n = 9
     
    print(fibo(n))
     
# This code is contributed by prasun_parate
// C# Program to find n'th fibonacci Number
using System;
 
public class GFG
{
    static int fib(int n)
    {
    double phi = (1 + Math.Sqrt(5)) / 2;
    return (int) Math.Round(Math.Pow(phi, n)
                            / Math.Sqrt(5));
    }
     
    // Driver code
    public static void Main()
    {
        int n = 9;
        Console.WriteLine(fib(n));
    }
}
 
// This code is contributed by 29AjayKumar
<?php
// PHP Program to find n'th
// fibonacci Number
 
function fib($n)
{
    $phi = (1 + sqrt(5)) / 2;
    return round(pow($phi, $n) / sqrt(5));
}
 
// Driver Code
$n = 9;
echo fib($n) ;
 
// This code is contributed by Ryuga
?>
<script>
    // Javascript Program to find n'th fibonacci Number
    function fib(n) {
      let phi = (1 + Math.sqrt(5)) / 2;
      return Math.round(Math.pow(phi, n) / Math.sqrt(5));
    }
     
    let n = 9;
      document.write(fib(n));
 
// This code is contributed by mukesh07.
</script>
Saída
34

Complexidade de tempo: O (logn), isso ocorre porque o cálculo de phi ^ n leva tempo logn
Complexidade de espaço: O (1)

Método 8

DP usando memoização (abordagem de cima para baixo)

Podemos evitar o trabalho repetido realizado no método 1, armazenando os números de Fibonacci calculados até agora. Precisamos apenas armazenar todos os valores em um array.

#include <bits/stdc++.h>
using namespace std;
int dp[10];
int fib(int n)
{
    if (n <= 1)
        return n;
 
    // temporary variables to store
    //  values of fib(n-1) & fib(n-2)
    int first, second;
 
    if (dp[n - 1] != -1)
        first = dp[n - 1];
    else
        first = fib(n - 1);
 
    if (dp[n - 2] != -1)
        second = dp[n - 2];
    else
        second = fib(n - 2);
 
    // memoization
    return dp[n] = first + second;
}
 
// Driver Code
int main()
{
    int n = 9;
 
    memset(dp, -1, sizeof(dp));
 
    cout << fib(n);
    getchar();
    return 0;
 
    // This code is contributed by Bhavneet Singh
}
import java.util.*;
 
class GFG{
 
// Initialize array of dp
static int[] dp = new int[10];
 
static int fib(int n)
{
    if (n <= 1)
        return n;
         
    // Temporary variables to store
    // values of fib(n-1) & fib(n-2)
    int first, second;
     
    if (dp[n - 1] != -1)
        first = dp[n - 1];
    else
        first = fib(n - 1);
 
    if (dp[n - 2] != -1)
        second = dp[n - 2];
    else
        second = fib(n - 2);
 
    // Memoization
    return dp[n] = first + second;
}
 
// Driver Code
public static void main(String[] args)
{
    int n = 9;
 
    Arrays.fill(dp, -1);
 
    System.out.print(fib(n));
}
}
 
// This code is contributed by sujitmeshram
# Initialize array of dp
dp = [-1 for i in range(10)]
 
def fib(n):
    if (n <= 1):
        return n;
    global dp;
     
    # Temporary variables to store
    # values of fib(n-1) & fib(n-2)
    first = 0;
    second = 0;
 
    if (dp[n - 1] != -1):
        first = dp[n - 1];
    else:
        first = fib(n - 1);
    if (dp[n - 2] != -1):
        second = dp[n - 2];
    else:
        second = fib(n - 2);
    dp[n] = first + second;
 
    # Memoization
    return dp[n] ;
 
# Driver Code
if __name__ == '__main__':
    n = 9;
    print(fib(n));
 
# This code contributed by Rajput-Ji
using System;
class GFG {
     
    // Initialize array of dp
    static int[] dp = new int[10];
    static int fib(int n)
    {
        if (n <= 1)
            return n;
              
        // Temporary variables to store
        // values of fib(n-1) & fib(n-2)
        int first, second;
          
        if (dp[n - 1] != -1)
            first = dp[n - 1];
        else
            first = fib(n - 1);
      
        if (dp[n - 2] != -1)
            second = dp[n - 2];
        else
            second = fib(n - 2);
      
        // Memoization
        return dp[n] = first + second;
    }
 
  // Driver code
  static void Main()
  {
    int n = 9;
    Array.Fill(dp, -1);
    Console.Write(fib(n));
  }
}
 
// This code is contributed by divyeshrabadiya07.
<script>
// Initialize array of dp
dp = Array.from({length: 10}, (_, i) => -1);
 
function fib(n)
{
    if (n <= 1)
        return n;
         
    // Temporary variables to store
    // values of fib(n-1) & fib(n-2)
    var first, second;
     
    if (dp[n - 1] != -1)
        first = dp[n - 1];
    else
        first = fib(n - 1);
 
    if (dp[n - 2] != -1)
        second = dp[n - 2];
    else
        second = fib(n - 2);
 
    // Memoization
    return dp[n] = first + second;
}
 
// Driver Code
var n = 9;
document.write(fib(n));
 
// This code is contributed by Amit Katiyar
</script>
Saída
34

https://www.youtube.com/watch?v=LwZRsM7qhrI
 Este método é contribuído por Chirag Agarwal.

Artigos relacionados:  
Números de Fibonacci grandes em Java
Por favor, escreva comentários se você achar os códigos / algoritmos acima incorretos ou encontrar outras maneiras de resolver o mesmo problema.

Referências:  
http://en.wikipedia.org/wiki/Fibonacci_number  
http://www.ics.uci.edu/~eppstein/161/960109.html